
,$

PAPER AAS 96-152

STRONAUTICAL

ADAPTIVE ORBIT DETERMINATION FOR
INTERPLANETARY SPACECRAFT

P. Daniel Burkhafl
Robeti H. Bishop

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

AASIAIAA Space Flight
Mechanics Meeting

Austin, Texas 12-15 February 1996
AAS Publications Office, P.O. Box 28130, San Diego, CA 92198



AAS 96-152

ADAPTIVE ORBIT DETERMINATION FOR
INTERPLANETARY SPACECRAFT

P. Daniel Burkhart* Robert H. Bishopt

The interplanetary orbit determination problem has been t@ition-
@y solved, using least-squares techniques. Due to operational limi-
tations of this method, a Kalman filter approach has been proposed
for future missions which includes all spacecraft and measurement
modeling states in the filter. The goal is to increase the accuracy
of the navigation process while utilizing only radiometric  (Doppler
and range) data. As an extension, an adaptive orbit determination
approach (b=ed  on the Magill  filter bank) hss been developed here 1:
QJMQ&Y? !Mjomet!ic  da_ta. This adaptive approach can be used ~%~ )’lf~

to systematically determin~  the operational filter parameters, which ~:pn
;d#)

are currently selected using ad hoc methods. The Mars Pathfinder 1’

mission is utilized to demonstrate the effectiveness of the adaptive
filter bank in determining variances for the process and measurement
noise parameters based on the tracking data. Results for the range
case show that the adaptive enhanced filter bank is effective in select-
ing the noise variances that match those w~ed to generate the data.
Results for the Doppler we are not as conclusive, due primarily to
linearization errors.

I N T R O D U C T I O N

The orbit determination problem for interplanetary spacecraft involves the cal-
culation of spacecraft states (i.e. position and velocity) and associated estimation
uncertainty measures based on information received from measurements that are
corrupted by various errors and random noise. One problem with the current ap-
proach to solving this problem is the lack of a systematic method for determining
appropriate values for the operational orbit determination filter. The operational
~lter  parameters, such as time constants, gravitational parameters, noise variances
and system parameters, are generally selected by trial and error based on e.xpen”ence
and computer simulation. A set of filter parameters are selected and the measure-
ment data is processed_. Based on the simulation results, the filter parameters may
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be changed and the data processed again, or the current result maybe accepted.
During this iterative process, often the measurement data is de-weighted, resulting
in estimation errors that are generally higher than the data requires. This ad hoc
approach to filter tuning, in addition to failing to take full advantage ofthe inherent”

“data accuracy, requires a large number of navigation team members to analyze the
results. Despite the success of this approach in the past, current realities do not
support its continued use. The orbit determination task must be completed with
fewer analysts due to reductions in resources for navigation, similar if not greater
tracking accuracy requirements, and less tracking data.

In addition to the systematic tuning of the operational filter, an approach for
detecting environmental changes is desirable. Suppose the process noise and/or
data noise profile changes during the mission. For example, the acceleration profile
of the spacecraft may change significantly due to unmodeled  venting. The need for
a non-labor intensive method to detect changes in the data profile and to point to
the source of the changes is clear (e.g. detect an unmodeled vent) .

For these reasons, a new ‘orbit determinatioil  methodology is desirable for oper-
~.. .

ational  interplanetary navigation. The motivation for the wo~k presented here is b,.
@prove  the operational tools used to perform the interplanetary orbit determination
function.

.

One constraint on the proposed solution is the utilization of realistic error sources
and reuktic models to accurately determine if the proposed approach will be useful
in an operational environment. In addition, the proposed solution must integrate

(
easily with current navigation approaches. Since a Kalman  filter>approach  will be
used for future interplanetary missions, the solution must be compatible with this
recursive filter method. Due to the desire to minimize tracking station use, personnel
costs and complexity, only conventional Doppler and ranging data will be considered.
Finally, the proposed solution must be implementable in a modular fashion. This
is not only to avoid extensive modification of existing orbit determination software,
but also to allow testing and verification in a smoother and less complicated fashion.

Along with the change from the least-squares filter to the Kalman  filter, another
major change in the current filtering practice is reflected in the so-called enhanced
$iL!ed. Current practice involves modeling certain Earth platform and transmission
media effects as consider parameters in the filter, In other words, these parameters
are allowed to affect the covariance of the estimated state, but are not themselves
estimated. The enhanced filter calls for inclusion of all these parameters in the esti-
mated state vector. In other words, the enhanced filter has no consider parameters.
When compared with current filtering practices, the result is increased accuracy in
the state estimatesl.  This ~terin~ strategy is currently being tested using actual
flight data from Galileo2.  Th;enhanced  Kalman  filter is utilized in this paper.

The scenario chosen for this study is the Mars Pathfinder mission, scheduled
for launch in December 1996, Specifics of the mission plan, including launch and
arrival dates and the
represent accurately,

tracking scenario, are presented, A model ~~+,developed  10-. . . - - -–
but with moderate complexity, the actual data received by
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the filter during a mission. This model, consisting of the spacecraft state, solar
radiation pressure effects, small unmodeled acceleration effects, transmission media
effects and Earth platform effects, is used to generate tracking data.

The approach taken here is to utilize radiometric  (Do pier and range) data and to
Yestablish navigation improvements through the use of ~~@ve  /iherin~  al@t,hrn&

Several methods were investigated in terms of ability to determine both process
. . ...7- –., -

noise and measurement noise parameters and to be general enough to handle a
time-varying problem. Since the Kalman  filter is already in use and is planned for
future use for orbit determination, a method utilizing this approach is desirable for
implementation reasons. It was found that the most desirable approach, in terms
of these constraints, is the ~agill Kalman  filter bank3,also known as the ~Multiple-

.V?~~@@Utii~rn (MMEA).
Results are given for several different sets of noise parameters included in the

adaptive scheme. The main result is the demonstrated ability of the adaptive
Kalman  filter bank to determine the underlying measurement and process noise
strengths. In addition, the results for the changing noise strengths case show the
ability of the filter bank to detect environmental and/or spacecraft changes.

Following this introduction is the Mars Pathfinder mission description, with
details on the adaptive filtering approaches and the Kalman  filter bank next, The
simulation results, followed by conclusions and future directions, complete the paper.

MARS PATHFINDER MISSION

The Mars Pathfinder mission is the first of a series of low-cost rapid turnaround
science missions from NASA’s Discovery Program. This mission will serve primarily
as a demonstration of key technologies and concepts for use in future missions to
Mars using scientific landers. In addition, Pathfinder includes a significant science
payload. Investigations of the Martian atmosphere, surface meteorology, surface
geology and morphology, and the elemental composition of Martian rocks and soil
are scheduled for Pathfinder. A free-ranging surface microrover is also part of the
mission. This microrover will be deployed by Pathfinder to conduct technology
related experiments and to serve as a mechanism for instrument deployment.

The mission is scheduled for the 1996 Mars launch opportunity, with a 30 day
launch window beginning on December 5, 1996 and ending on January 3, 1997. The
arrival date at Mars is fixed at July 4, 1997. The transfer time will vary from 212
days to 182 days, depending on the actual launch date. The trajectory used fcw
this study corresponds to the January 3, 1997 launch date, Upon arrival at Mars on
July 4, 1997, the spacecraft will perform a direct entry into the Martian atmosphere.
To achieve a landing, a parachute is deployed along with a rocket braking system
and an airbag system. After landing the primary surface operations begin, which
includes deployment of the microrover4.

The interplanetary transfer phase of the Mars Pathfinder mission is under in-
vestigation here. The adaptive filtering approach proposed for the interplanetary
navigation problem is not dependent on the Mars Pathfinder mission. The Mars
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Figure  lMars  Pathfinder’lYajectory

Table 1
Mars Pathfinder trajectory characteristics

1 2

X108

(planar projection)

(March 5-June 18, 1997)

Parameter

Earth to spacecraft range (km)
Geocentric Declination (deg)

Sun-Earth-Probe (SEP) angle (deg)

Value (start to end of arc)

36.2 X 106 to 180 X 106

15.85 to –0.12
1.4 to 51.7 2

Pathfinder scenario is chosen so that the adaptive filtering method can be tested us-
ing a realistic interplanetary mission. Epoch conditions are known for the spacecraft
and the planets on March 5, 1997, The data arc used in this study lasts for 105 days
from the epoch, or until June 18, 1997. A plot of the Earth, spacecraft and Mars
trajectories is shown in Figure 1. The trajectory characteristics (the shaded portion
of Figure 1) are detailed in Table 1. During interplanetary cruise, the scientific
instruments will be checked but not used.

The interplanetary cruise portion of the mission begins approximately seven days
after launch (L+7)  and ends 15 days before encounter (M-15). The main task during
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interplanetary cruise is to determine the required corrections to the trajectory to
ensure the spacecraft arrives when and where it is scheduled. The nominal mission
plan has four Trajectory Correction Maneuvers (TCM’S), if required. The first two
maneuvers are scheduled at L+30  days (to correct for injection errors) and L+60
days (to correct remaining injection errors and TCM 1 errors). The third maneuver
is scheduled for M-60 days (for entry targeting), while the final maneuver is planned
for M-10 days (to insure the landing conditions are met). Thus the data arc used
here begins after the completion of the first two TCM’S  and will include the third
TCM. The solution at the end of data processing will be propagated to encounter,
which includes the fourth TCM. The navigation solution, obtained after processing
the data from the 105 day interplanetary cruise, will be used to support the final
TCM if the maneuver is required. The errors due to the fourth TCM will not affect
the navigation solution significantly .

The tracking scenario contains two-way X/X band data taken from the Deep
Space Network (DSN) 34-m High Efficiency (HEF)  Deep Space Stations (DSSS)
located near Goldstone, California (DSS 15), Canberra, Australia (DSS 45) and
Madrid, Spain (DSS 65). The tracking schedule includes one pass of data for each
station per week. The tracking passes are started with DSS 15 on the first day, DSS
45 on day four and DSS 65 on day six. After each station makes one pass, six passes
(days) are skipped before the next pass at that station is initiated. Thus, DSS 15
will next track on day seven, DSS 45 on day ten and DSS 65 on day twelve. This
pattern is repeated until the end of the considered portion of the trajectory. The
interval between data points is ten minutes with range and Doppler data collected
at the same time. The minimum elevation angles are 50° for DSS 15 and DSS 65,
and 30° for DSS 45. Data points for times when the elevation angle is smaller than
these values are rejected. All data points that meet the requirements for the day
of the pass and the minimum elevation angle are included in the data set. These
criteria were set in order to simulate the specified tracking schedule on one 4 hour
pass per week at each tracking station during interplanetary cruise4. Following this
schedule, about 1,250 range and 1, 250 Doppler measurements were available over
the 105 day interplanetary cruise phase.

ADAPTIVE FILTERING APPROACHES

An implicit assumption in the Kalman  filter is that all of the system parameters,
including the state transition matrix, the measurement partial derivatives, and the
process and measurement noise matrices are known. In general, this is not the
case. Often there are parameters not included in the filter model that influence
the measurements. This results in a modeling mismatch between the filter and
the measurements which affects the state transition matrix and the measurement
partials.  In addition, the process noise and measurement noise matrices are rarely
precisely known. For these reasons, it maybe desirable to apply an adaptive filtering
scheme to the problem at hand.
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The general problem to be solved is described by

. .

z~+l =  @~Zi+Ui
Vi = Hi~i+vi

where ~i is the state vector, @i is the state transition matrix, t.li is the process noise
vector, vi is the measurement noise vector and Hi is the measurement matrix. Both
Ui and vi are uncorrelated  zero-mean Gaussian white noise sequences with

E{Ui} =0, ll{uiu~} = Q6ijj

E{ Vi} = 0, E {Vit)f} = RJj)

where Q is a nonnegative definite matrix and R is a positive definite matrix, both
with unknown true values. The standard filtering problem is to estimate ~i based
on the observation set y; = {Y1, V2! . . ., vi}, where the estimated values will be
denoted Zi. In this case, the discrete Kalrnan  filter is used:

where K i is the Kalman  gain and vi = vi – lliz~-) is the measurement residual

with covariance HP\-) H: + R. This solution is optimal based on exact knowledge
of Q and R. However, since this is not the case here, an adaptive filter will be used
to help determine Q and R.

Evaluation of Adaptive Methods

Based on the discussion presented by Mehra in 1972, adaptive filtering rqeth-
~ds can be divided int~. four groups: maximum  likelihood!  correlation) covariance_.. . . .
matching and Bayesianl”. Covariance matching techniques will not be discussed
here.

A literature survey revealed several potential solutions to our problem. Com-
puter experiments were conducted on the methods that showed the most promisell.
A brief summary is presented here, Of the maximum likelihood methods, the one
with a history in orbit determination was proposed by Meyers and Tapley12.  How-
ever, this approach did not offer a significant improvement over current practice.
Many correlation methods exist, but the most well-known was proposed by Mehra]  3.

However, correlation methods are better suited to time-invariant problems. At-
tempts to extend this approach to time-varying problems have not been successful]4.
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The Bayesian  approach that isperhaps the most well-known is that originally for-
mulated  by Magi113.  This method is known as simply the Kalman  filter bank or
the &fulJliple  Model  Estimation A&orithm  (MME_A),  sho_w~ @ Figure 215. The ap,,, .__ —.. .— -. .- .- —---””.. ._. _ .— . . ----
preach is to implement a bank of Kal~afi”filters,  each modeled with different values
of a finite unknown parameter set. The method, in its original form, computes the
weighted sum of the estimates from each filter to determine the optimal adaptive
estimate.

The main reason the Kalman  filter bank approach was selected here is that it

solves the orbit determination problem quite well. The proposed methodology is also
a practical extension to current navigation practices for interplanetary spacecraft.
The cost of integrating this approach with the current operational enhanced Kalrnan
filter k minimal. All that is required from the filter are pre-update  measurement
residuals and the covariance ~sociated  with these residuals at each data point, which
are already computed by the Kalman  filter. The assumptions that are required for
application of the filter bank are the same that govern the use of a single Kalman
filter. Thus, if the problem is formulated such that the Kalman  filter is applicable,
then the filter bank approach can be used without modificationlG.

In addition, the filter bank approach has been shown to be a practical algorithm
in solving real-world problems17,18,19.  One important problem that can be solved
most effectively using the Magill  filter bank is that of hypothesis testing, which is to
choose from among a finite set of filters the optimal filter in the bankls  ,16. In this
use, the output of interest is the weight computed for each filter in the bank. The
Kalman  filter bank implemented in this study is utilized as a hypothesis tester.

The Kalman  filter bank will allow the analyst to model several filters simultane-
ously and directly compare the results automatically. The filter bank will determine
which filter is operating optimally (where optimal is precisely defined later) with
respect to the measurement data, thus helping the process of selecting the filter pa-
rameters. For the case where the process and/or measurement noise profile changes,
the filter bank can de-select a given filter and choose a different filter that more
closely matches the current environment. In this way, in addition to the establish-
ment of a systematic method to choose the operational filter parameters and to
detect environmental changes, the orbit determination process can be completed
with fewer team members, while potentially increasing the accuracy and timeliness
of the results.

Adaptive Kalman Filter Bank Development

The problem to be solved may be stated as follows: An estimate is desired for
a sampled-data, Gaussian process, which may be corrupted by additive noise, such
that the estimate minimizes some performance measure. The observed process is a
function of some unknown parameter vector, cr, which is a member of a finite set of
known parameter vectors3.

Assume that the parameter vector a is a random variable that may or may not
be Gaussian. This implies that a is an unknown constant for a specific sample run,
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Figure 2 Weighted Sum of Kalman Filter Estimates

but has a known statistical distribution. The optimal estimate 2~ is a weighted sum
of the individual Kalman  filters, with each filter operating with a different vaIue of
a. The weighted sum, for L Kalman  filters, is given by

where p(~i Iv;)  is the discrete probability for ~i conditioned on the measurement
sequence Vi, The problem now is reduced to the determination of the weight factors
P(~I I!J;), P(CY2 Iv;), etc. AS the me~urement  process evolves, the weights change
recursively. As more measurements are processed, the knowledge of the state and
the unknown parameter CY will increase. If as time progresses it is possible to learn
which stochastic process is observed, then it is reasonable to expect the optimal
estimator to converge to the appropriate filter for that process. In terms of the
block diagram in Figure 2, the weighting coefficient for the true filter will converge
to one while all of the rest will converge to zero3  ,20.

The weighting factors p(~i Iv;)  are the adaptive feature of this estimator. Using
13ayes’ rule, the weights are computed via

[

P(Vllai)P(ai)fl(CYillJ~) =
1X$=l P(Vil~j)P(~j)  ‘

i=l,2, . . ..L. (2)

The values for p(~i) are assumed known, so all the terms in this relation are known
except for p(~~ I ~j). To compute the value for p(~~ ] ~j), the processes z and y
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will be assumed to be Gaussian. In addition, the measurement sequence y; will
be assumed to be a sequence of scalar measurements yo, YI, ..., W. When these
conditions are applied, the result is

In general, p(y~laj)  will be different for each filter in the bank.
In the Mars Pathfinder problem, only the aposteriori  probabilities ~(~il~~)  for

each hypothesis are computed by the filter bank. As the filter bank processes data,
the weighting factor for the best filter will increase while the other weighting factors
decrease]5. For this problem, the Kalman  filters are assumed to have an unknown
measurement noise variance, in addition to possibly unknown process noise param-
eters. All other parameters and models between the filter and the environment
are the same, Thus the MMEA will be determining the filter with the parameters
that are the closest to the values from the environment, as determined from the
measurements.

RESULTS

Results from several cases are shown. The
case where all noise parameters are included in

first set of results are for the range
the filter, but only the measurement

noise and NGA parameters are adaptively determined. In addition to the range
case, a similar case where Doppler data is processed is shown. The final case in-
volves a change in the nongravitational parameter during tracking. Range data is
utilized in this study along with a high-gain antenna, which reduces the random
noise component of the noise profile. This allows the Kalman  filter bank to run over
a larger set of datall.

The models and values assumed for the error sources can be found in Table 2.
Most are modeled as first-order Gauss-Markov  random processes. The exceptions
are the spacecraft state, with no associated process noise parameters, and the station
locations, which are modeled as random biases with the variances shown in Table 2.
The solar pressure model includes the symmetry of the spacecraft and the effect
of the solar panels, and reflects a 5% uncertainty in the model parameters. The
nongravitational accelerations approximate small unmodeled  forces in each of the
three coordinate directions due to gas leaks and attitude maintenance activity. The
troposphere and ionosphere values are for each tracking station, The models are
based on the Mars Pathfinder Operation Plan4.

The results presented for each case include the estimates and the statistics for
the orbit determination errors at the end of the tracking propagated to the nominal
time of Mars encounter and expressed in terms of the B-plane coordinate frame8.
This coordinate frame, also known as the aiming plane, is defined by unit vectors
S, T and R. The vector S is parallel to the spacecraft velocity vector relative to
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Table 2
Filter and Truth Model Parameters (one way)

Name a-pn”ori  o steady-state o Time constant ]

Spacecraft State 10 km, 1 cm/s
Solar Radiation Pressure:

Radial (G,) 5% (= 0.07) 5% 60 days
Transverse (GZ/GV) 5% (= 0.02) 5% 60 days

Nongrav Accelerations:
( 1 0-’ 2 km/s2) 0.7 0.7 7 days

Station Locations:
Spin axis 10 cm
z-height 10 cm

Longitude 10 cm
Pole Orientation 10 cm (17 nrad) 10 cm 2 days
Rotation Period 15 cm (0.3225 ms) 15 cm 1 day

Zenith Troposphere 5 cm 5 cm 0.1 days
Zenith Ionosphere 3 cm (0.5 el/m2) 3 cm 0.2 day

Measurement Noise:
Range 70 cm

Doppler O.O1 mm/see
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the target planet (Mars) at the time of entry into the target planet’s gravitational
sphere of influence, the vector T is perpendicular to the target planet equatorial
plane and the vector l? is such that the three unit vectors form a right handed
coordinate system. The miss vector Bis the aim point for planetary encounter and
liesin  theZ’-13 plane. The miss vector would be the point of closest approach to
the target planet ifthe target planet did not deflect the flight path of the spacecraft
(i.e. the planet had no mass).

The statistics are presented as a l-u uncertainty of the miss vector resolved
into miss components 1? “ R (normal to the target planet equatorial plane) and
B*T (parallel to the target planet equatorial plane), anda l-o uncertainty in the
linearized time-of-flight (LTOF).  The LTOF specifies the time of flight to encounter
(point of closest approach) if the magnitude of the miss vector were zero and defines
the time from encounter. The miss vector, or the distance from the center of Mars
where the spacecraft crosses the target plane, is 4550 km oriented 201.8° clockwise
from the T axis. In addition, the weighting coefficients for each fiIter in the bank
are presented as a function of time.

The encounter plane error ellipse requirements (10) are 17 km for .B o R, 6.2 km
for B . T and 7 seconds for L2!WF’, with the error ellipse oriented at 111°4.

Results are not presented in this paper, due to space limitations, for the residuals
and error covariances for the individual filters. These are useful in determining how
well the filters are performing. The results obtained (but not shown here) show that
the filter performance matches the computed weighting factors. In other words,
filters with higher weights performed better than those with smaller weights.

Range Case

The first case considered adapts the nongravitational acceleration parameters
and the measurement noise parameter. A bank of 15 filters is set up with the scaling
from the nominal values as shown in Table 3. The filter numbers are determined as
shown in the table. For example, filter 14 has a measurement noise that is ten times
the nominal value and a NGA steady-state variance that is five times the nominal
value.

The weighting factors for this scenario are plotted in Figure 3. This plot shows
nonzero weights for filters 6, 7 and 8. The weight for filter 8 is nearly unity, while
the other filters have negligible weights. The filters in the bank that do not have
the correct measurement noise parameter are eliminated quickly by the MMEA.
The remaining data is used to differentiate the process noise values from among the
filters with the correct measurement noise parameter,

The encounter plane estimates and covariances for filters 6 through 10 are shown
in Figure 4, For this case, filters 6 and 7 appear to be quite close to the truth. Filter
8, with a slightly higher weight and the correct filter, had slightly worse estimates.
Since these results are based on a single realization of the random processes, Monte
Carlo analysis with different realizations of the random processes was conducted to
verify the expected results. The Monte Carlo results are presented in Burkhart 1 I.
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Figure 3

Table 3
Scaling factors: Measurement and NGA Parameters
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Figure 4

-40

-20

0

~ 20
x
cc

M 40

60

80

10C

. . . .

1 I i 1 1 I

o 5 10 20 25 30
B, T(kr$

Encounter Results – Measurement
Adapted (Range)

and NGA Parameters

13



:: :: ::
j ().6 .;;

:: ::
:: ::
:: ::,.:: :::: ,,

;0.5 -!!
:: ::
:: ::

:: :: ::
5 :: :: ::
a 0.4 -j:

:: ::
3 :: ::

:::: :::::: ::
0.3 -:: :: :::::: . ::,,:: :: D? ,.:: ::
0.2 -“; .

:: 6 44—
::

0.1 - : :: 5:: :,,. :::: ::
0- : ::, 1 ,

0 2 4 6

::
::
::
::

::
::
::@c::::::

&
8 10

—

—

Time from epoch 5-MAR-1897 21:06:15.165 UTC (daya)

Figure 5 Weighting Coefficients – Measurement and NGA Parameters
Adapted (Doppler)

Doppler Case_-.-. .—-— . ..– . --

The Doppler case adapts the nongravitational acceleration parameters and the
measurement noise parameter, A bank of 15 filters is set up with the scaling from
the nominal values as shown in Table 3 for the range case.

The weighting factors for this scenario are plotted in Figure 5. This plot shows
nonzero weights for filters 11 to 15, The weight for filters 11 and 12 are approxi-
mately 0.4, while filter 13 has a weight near 0.25 and filters 14 and 15 have weights
of about zero. As before, the correct filter is filter 8. Thus, for this case, the filter
does not converge to the correct filter. These results for the Doppler case are not as
conclusive as for the range case, Problems with the formulation of the Doppler mea-
surement due to linearization and the difference range formulation are apparent
from the results. The filter chosen by the filter bank has similar or smaller process
noise and larger measurement noise compared to the environment.

The encounter plane estimates and covariances for filter 8 and filters 11 through
15 are shown in Figure 6, For this case, filter 8 appears to be the best filter.

Study of Noise Parameter Variations-. ----- - ---—. -—. . . . . . . .. ___ .. _.,.. . .

The final run presented involves simulated range data with a change in the
nongravitational acceleration steady-state variance after approximately half of the
tracking segment is complete. The parameter change represents a possible valve

14
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leak after a TCM or some other change in the force profile of the spacecraft. This
variance is assumed constant for the first part of the tracking. After 62 days of
tracking, or just after the Mars Pathfinder TCM 2, the parameter is changed to a
new constant value. This situation represents the effect of a thruster leaking after
it is fired for the TCM, a leak in a fuel line, or some other phenomena related to
a thruster malfunction. The process noise term is scaled by 10, which corresponds
to scaling the NGA variance by ~. The scaling was chosen to be such that the
correct filter (after the variance change) is no longer part of the bank of 15 filters
(see Table 3). In this way, the case will illustrate that the bank will converge to the
filter operating the closest to the data’s noise profile. All error sources are included
in the simulation.

The weighting factors for each filter are shown in Figure 7, For the first 60 days
of tracking, the filter is converging to filter 8, which is the correct filter. After the
change in the variance, the filter quickly selects filter 9, which has nominal values
for all variances except a scaling on the NGA of 5. It is thus shown that the bank
is able to detect changes due to unmodeled  thruster variations,

CONCLUSIONS

The @@ive estimation solution described in this work solves the orbit deter----~.-m —.. ---- .--. % . .
mination  problem very effectively given the real-world constraints. The adaptive

15



1

0.9

0.8

0.7

0.3

0.2

0.1

::. .
. . .. . .. . .

. . . . . . .. . . . . .. . . . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

:1:

. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .. . . ::. . .. . . ::. . . . . I

. . . . . .. . . . . .. . . . . .

20

Figure 7

. . . . . . . .
:::::: ::. . . . . . . .
:::::: ::
:::::: ::
:::::: ::
:::::: ::
::::::: :
::::::: :
:::::: ::
:::::: ::
:::::: ::
::::::: :. . . . . . . .
:::::: ::
:::::: ::. . . . . . . .

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .
::::::
::::::
::::::
::::::
::::: .
::::::
::::::. . . . . .

::::::: ::::::: :::
:::::: :::::: :::::
:::::: :::::: ::::.
::::::: :::. ...,.. . . .
:::::: ::::
:::::: ::::. . . . . . . . . .
::::::: :::. . . . . . . . . .

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . ..,.. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .,... . .

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

::
::
::
::
::
::. .
::. .
::
::
::
::
::
::
::

::::::. . . . . .. . . . .
::::::
:::::.
:::::;. . . . .

::
::
::
::
::
::. .
::. .
::
::
::
::
::
::
::

. .
:::
:::
:::
:::
:::
:::
:::
:::
:::.,

. . .

Time
40 60 80 100 ‘“ 120

from epoch 5-MAR-1 99721:08:15.185 UTC (days)

Weighting Coefficients – NGA
(HGA-Range)

Parameter Change

16



.

-filter can be used as an effective tool to assist the navigation engineer in selecting
filter parameters, thus allowing a closer match of the filter parameters to the true
values, leading to a potentially more accurate navigation solution. In addition, this
method, requires fewer hours of processing and analysis and allows a smaller group
of analysts to determine accurate navigation solutions. More i.rnportaptly,  the long
term objective of this study is to develop an adaptive filtering methodology that
can be used for processing of actual mission data, It has been shown in this study
that this objective is achievable.

Results for the range cases show that the Magi]]  enhanced Kalman  filter bank
chooses the filter with the same parameters as the simulated data. Cases where there
was no clear winner were shown to have several filters with nonzero weights and
similar performance. Smaller error sources, as determined by covariance analysis,
are more difficult to determine, leading to selection of no single filter, but rather
several with similar performance. Based on these results, the filter bank will be a
useful tooI in the tuning process for the operational filter. In addition, the bank
is useful for the determination of changes in the tracking data, giving a warning
of potential problems such as a thruster malfunction or some other change in the
acceleration profile of the spacecraft.

Results for the Doppler cases are less conclusive. One problem with this for-
mulation of the Doppler measurement is the effect of roundoff errors due to the
linearization and the difference range formula. For example, the range values are
on the order of 108 km. The measurement noise on the Doppler measurement is
0.01 mm/s, or 10 ‘8 km. The difference is 16 digits, or near the numerical limits of
a 64 bit number. In addition, the difference range formulation implemented in the
partial derivatives and the data generation may be susceptible to differences due to
Earth rotation from the start to the end of the tracking pass. One way to address
these problems is to implement a more theoretically correct version of the range rate
measurement. In addition, an extended Kalman  filter, which does not involve a lin-
earization about a reference trajectory, may help this problem as well. The Doppler
results in general show that filters with larger measurement noise are chosen, while
the other filters have zero weights. In most cases, the filters with correct or smaller
process noise are chosen, as for the range case.

A next step is implementation of the filter bank for use in processing actual
mission data. The proposed method could be used by the navigation team members
making the individual runs to systematically eliminate incorrect filter models. This
could be completed by several individuals independently, with comparison of results
after processing is complete. The development of an extended Kalman  filter capable
of processing real data is under way, and the Mars Pathfinder problem will be one
of the first cases tested.

One additional advantage is the obvious parallel computing possibilities with
this approach. This approach can be implemented using search methods (such as
genetic algorithms21)  to update the filter bank for operation in an iterative fashion.
These genetic algorithms can be implemented easily using the filter bank and can
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be implemented in a parallel processing environment22.
The Kalman  filter bank is a method that has a successful history in real-time

applications such as power system fault detection, image processing and terrain-
height correlation for helicopter navigation. It has been shown here to also have
application in interplanetary orbit determination.
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